
Exercices de renforcement 4ème SG (UAA3)

1) Voici une série de composés, trouve leur formule générale.

2) Retrouve la valence de l'élément métallique de transition.

$Fe(OH)_2$	$FeSO_3$
$ZnSO_4$	$CuSO_4$
$Pb(NO_3)_2$	CuOH
FeS	PbO_2
NiSO ₃	ZnO
$Pb(OH)_2$	$Ni(OH)_2$
$AgNO_3$	HgO
$FeCl_3$	

3) Complète le tableau suivant

Formule moléculaire	Formule générale	Fonction chimique	Nom
Li ₂ O			
			Sesquioxyde d'azote
			Nitrate de Baryum
			Trioxyde de soufre
Hgl ₂			
HBr			
			Acide phosphoreux
Fe₂O₃			
ZnSO ₄			
			Hémiheptoxyde de chlore
Co(OH) ₂			
			Sulfure de fer (II)
CaO			
			Hydroxyde de calcium
K₂S			
			Oxyde de cuivre (II)
Ba ₃ (PO4) ₂			
H ₂ S			
			Hydroxyde de cuivre (II)
HBr			
SiO ₂			
Mg(OH)₂			

4) Pondère les équations suivantes :

a)
$$CH_4O + O_2 \rightarrow CO_2 + H_2O$$

b) Mg + HCl
$$\rightarrow$$
 MgCl₂ + H₂

c)
$$H_3PO_4 + Ca(OH)_2 \rightarrow H_2O + Ca_3(PO_4)_2$$

d)
$$CH_4 + O_2 \rightarrow CO_2 + H_2O$$

- 5) Voici des informations concernant des réactions chimiques, repère les réactifs (à souligner en bleu dans énoncé) et les produits (en vert) de chaque proposition, traduis la réaction par une équation chimique pondérée.
 - a) De l'acide sulfureux est neutralisé par de l'hydroxyde de potassium pour donner du sulfite de potassium et de l'eau
 - **b)** Un ruban de magnésium est plongé dans une solution d'acide bromhydrique diluée. Il se forme du bromure de magnésium et du dihydrogène.
 - c) Du dihydrogène se dégage lorsqu'on fait réagir du zinc et une solution d'acide sulfurique. Il se forme également du sulfate de zinc.
 - d) Un précipité bleu (solide) d'hydroxyde de cuivre et une solution de sulfate de sodium sont obtenus lorsqu'une solution de sulfate de cuivre est mélangée avec une solution d'hydroxyde de sodium.
 - e) L'acide phosphorique en solution peut être neutralisé par une solution d'hydroxyde de magnésium pour donner un précipité de phosphate de magnésium et de l'eau.
 - f) Une lame d'aluminium est plongée dans une solution d'acide chlorhydrique diluée. Il se forme du chlorure d'aluminium et de l'eau.
- 6) Calcule la masse molaire des composés suivants et donne le nom de ceux-ci : H₂CO₃, CO₂, KI

7)	Si tu as gagné une mole d'euros à une loterie le jour de ta naissance et si, depuis ce jour tu dépenses 1 milliard d'euros par seconde que te reste-t-il aujourd'hui ? Dans combien d'années auras-tu tout dépensé ?
8)	Sachant que le corps humain contient en moyenne 62% d'eau en masse, détermine le nombre de molécules H ₂ O qui constitue le corps d'un homme de 80 kg.
9)	La vanilline est le composant principal de l'arôme naturel de vanille. Si une glace « à la vanille » du commerce contient $0,55g$ de vanilline de formule $C_8H_8O_3$. Combien de moles de vanilline contient cette glace (valeur entière) ? Calcule combien de molécules cela représente.

10) Sachant que le corps humain contient en moyenne 62% d'eau en masse, détermine le nombre de molécules H ₂ O qui constitue le corps d'un homme de 80 kg.
11) Quand tu absorbes un comprimé d'aspirine contenant 330 mg d'acide acétylsalicylique, tu peux t'étonner qu'une si petite quantité de matière puisse être active, une fois répartie dans ton organisme. a) Détermine la masse molaire de l'acide acétylsalicylique C ₉ H ₈ O ₄ .
b) Détermine le nombre de moles d'acide acétylsalicylique C ₉ H ₈ O ₄ que tu as effectivement ingérées.
c) Détermine le nombre de molécules d'acide acétylsalicylique C ₉ H ₈ O ₄ que tu as effectivement
ingérées.

12) Complète le tableau et indique ton raisonnement mathématique et les unités utilisées.

Gaz	Masse molaire M	Quantité de matière n	Masse m	Nombre d'entité N	Volume V Dans les CNTP
Ar					122,5 mL
CO ₂			1,1 kg		
CH ₄		2 mol			
N ₂ O ₄				3,01.10 ²⁰ molécules	

¹³⁾ Calcule la pression (en atmosphère) produite par 13,5 kg de propane (C_3H_8), à 65°C, dans une bouteille de 15 L. La constante des gaz parfaits R = 8,314 m³. Pa / mol. K

14)	L'équation non-	pondérée de	combustion de	e l'éthanol est :	C ₂ H ₅ OH +	$0_2 \rightarrow 0$	CO ₂ +	. H ₂ O
-----	-----------------	-------------	---------------	-------------------	------------------------------------	---------------------	-------------------	--------------------

Quel est le nombre de moles de dioxyde de carbone formées lorsqu'on fait brûler totalement 0,254 mole d'alcool ?

- **15)** Dans une pile à combustible produisant de l'eau à partir de H_2 et O_2 , on fait réagir 10 moles de H_2 et 10 moles d' O_2 .
 - **a)** Quel est le réactant limitant et combien de moles d'eau seront formées lors de la combustion de ce mélange ?
 - b) Calcule le volume (CNTP) du réactif en excès qui subsistera après réaction ?

16) On prélève un volume initial $V_i = 10$ mL d'une solution aqueuse de sulfate de cuivre (II) (CuSO ₄) of concentration $C_i = 4.10^{-3}$ mol.L ⁻¹ (solution mère). Le volume de la solution fille préparée est $V_f = 200$ mL
 a) Comment appel-t-on cette manipulation ? b) Quelle est la relation qui existe entre C₀, V₀, C₁ et V₁ où C₁ est la concentration de la solution obtenu après avoir réalisé cette manipulation ?
<i>c)</i> Quelle est la quantité n₀ (en mol) de sulfate de cuivre (II) prélevée ?
d) Quelle est la concentration C_f de la solution obtenue ?
e) Comment réaliser cette manipulation ? Préciser bien la verrerie utilisée sans la schématiser.
17) Calcule le volume occupé par 50 mg de CO_2 à 5°C et à pression atmosphérique.

18) Un laborantin décide de mélanger deux solutions (S₁ et S₂) d'acide chlorhydrique (HCl) à des concentrations et volumes différentes.

- ightharpoonup S₁: C₁ = 0,25 mol.L⁻¹ et V₁ = 150 mL.
- ightharpoonup S₂: C₂ = 1,25 mol.L⁻¹ et V₂ = 50 mL.

Calcule la concentration de la solution final S_f.

phosphorique (H ₃ PO ₄)? L'équation non-pondérée de cette réaction est :
$Ca(OH)_2 + H_3PO_4 \rightarrow Ca_3(PO_4)_2 + H_2O$
 20) Le tétrachlorure de silicium, qui est un liquide incolore à température ordinaire, s'obtient en chauffant un mélange de dioxyde de silicium et de carbone dans un courant de dichlore gazeux : SiO_{2(s)} + Cl_s + Cl_{2(g)} → SiCl_{4(l)} + CO_(g) Dans les CSTP, détermine : - Les masses des espèces solides et liquides présentes à la fin de la réaction ; - Les volumes des espèces gazeuses présentes à la fin de la réaction. Si 0,15 kg de SiO₂, 70 g de C et 100 dm³ sont en réaction.